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Mild cognitive impairment (MCI) is the prodromal stage of Alzheimer’s Disease

(AD). Prior research shows that females are more impacted by MCI than

males. On average females have a greater incidence rate of any dementia

and current evidence suggests that they suffer greater cognitive deterioration

than males in the same disease stage. Recent research has linked these sex

differences to neuroimaging markers of brain pathology, such as hippocampal

volumes. Specifically, the rate of hippocampal atrophy affects the progression

of AD in females more than males. This study was designed to extend

our understanding of the sex-related differences in the brain of participants

with MCI. Specifically, we investigated the difference in the hippocampal

connectivity to different areas of the brain. The Resting State fMRI and T2 MRI

of cognitively normal individuals (n = 40, female = 20) and individuals with MCI

(n = 40, female = 20) from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) were analyzed using the Functional Connectivity Toolbox (CONN).

Our results demonstrate that connectivity of hippocampus to the precuneus

cortex and brain stem was significantly stronger in males than in females.

These results improve our current understanding of the role of hippocampus-

precuneus cortex and hippocampus-brainstem connectivity in sex differences

in MCI. Understanding the contribution of impaired functional connectivity

Frontiers in Aging Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.959394
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.959394&domain=pdf&date_stamp=2022-08-10
mailto:yuan.yang-2@ou.edu
https://doi.org/10.3389/fnagi.2022.959394
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2022.959394/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-959394 August 4, 2022 Time: 15:5 # 2

Williamson et al. 10.3389/fnagi.2022.959394

sex differences may aid in the development of sex specific precision medicine

to manipulate hippocampal-precuneus cortex and hippocampal-brainstem

connectivity to decrease the progression of MCI to AD.

KEYWORDS

mild cognitive impairment, sex difference, hippocampus, functional connectivity,
Alzheimer’s disease

Introduction

According to the CDC, there are 6.2 million people in
the United States living with Alzheimer’s Disease (AD) in
2021 (Centers for Disease Control and Prevention, 2021). This
disease disproportionately affects females as they constitute
more than two-thirds of the AD population (Snyder et al.,
2016). The higher prevalence of AD in females has been
attributed to females having greater longevity compared to
males (Guerreiro and Bras, 2015). Since age is the greatest risk
factor for the development of AD, it would be reasonable to
state that more females would live long enough to develop AD.
However, increasing evidence suggests there are other factors
contribute to the sex-specific risk of AD such as genetics,
hormonal differences, rate of depression, education level, and
sleep disturbances (Andrew and Tierney, 2018; Mielke, 2019;
Pearce et al., 2022).

The most important predictor is mild cognitive impairment
(MCI) that always precedes AD, usually years before meeting
the diagnostic criteria of clinical dementia (Petersen, 2004).
MCI is defined as cognitive decline greater than expected for
a given age but does not notably interfere with daily activities
(Salmon, 2011). Current clinical evidence demonstrates about a
20% annual conversion rate of MCI to AD and that more than
half of the individuals with MCI progress to dementia within
5 years (Gauthier et al., 2006; Davatzikos et al., 2011; López
et al., 2020; McGrattan et al., 2022). In addition to prevalence
differences, females experience greater cognitive deterioration
than males in the same disease stage (Alzheimer’s Association,
2016) that are also present in individuals with MCI (Sohn et al.,
2018). Compared to males with AD, females perform worse
on a variety of neuropsychological tasks and have greater total
brain atrophy and temporal lobe degeneration (Henderson and
Buckwalter, 1994; Chapman et al., 2011; Gumus et al., 2021).
Magnetic resonance imaging (MRI) data collected through
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study
attested to the faster atrophic rate (Hua et al., 2010). The
hippocampus is also known to be affected at the earliest stages
of MCI, even before a diagnosis can be made (Braak and Braak,
1995), and hippocampal atrophy has been found to affect the
progression of AD only in females (Burke et al., 2019). Recent
research revealed additional brain imaging markers that may
also contribute to the sex differences in AD and are specifically

present in individuals with MCI and that reduced hippocampal
volume and any microhemorrhage, regardless of location, are
the best MRI features to predict the transition from pre-
MCI to MCI (Ferretti et al., 2018; Jiang et al., 2022). Cavedo
et al. (2018) found that males with MCI had a higher anterior
cingulate cortex amyloid load and glucose hypometabolism
in the precuneus, posterior cingulate, and inferior parietal
cortex. Similar findings have been reported among cognitively
normal adults (Rahman et al., 2020) suggesting that males
have a higher brain resilience. However, the role of sex-related
differences in hippocampal connectivity during MCI has not
been elucidated yet.

This study was designed to extend the understanding of the
mechanism underlying the sex differences in pathophysiological
biomarkers in individuals with MCI. Our hypothesis was that
hippocampal functional connectivity (FC) to the precuneus
cortex and the brain stem shows sex-and MCI-specific
differences. The FC of the hippocampus will be analyzed and
compared between females and males with MCI, as well as
cognitively normal females and males as controls.

Materials and methods

Data source

The data for this study were extracted from the
ADNI1, which is a publicly accessible dataset available at
adni.loni.usc.edu. Launched in 2003, ADNI is a longitudinal,
multi-site, cohort study, led by Principal Investigator Michael
W. Weiner, MD. The original study, ADNI-1, has been extended
three times and the database contains subject data from ADNI-
1, ADNI-GO, ADNI-2, and ADNI-3. The overall goal of the
studies was to evaluate whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). For up-to-date information, see www.adni-info.org.

1 https://adni.loni.usc.edu/
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Screening process

The data were screened for subjects with MCI. To eliminate
multiple images from the same subject, the data included early
MCI (EMCI), late MCI (LMCI), or MCI from the 1-year subject
visit of ADNI-1, ADNI-GO, ADNI-2, and ADNI-3. Subjects’
selection was also limited to those with data collected from
resting-state functional magnetic resonance imaging (rs-fMRI)
and 3.0-Tesla T2 magnetic resonance imaging. A similar search
methodology was applied for cognitively normal (CN) subjects.
The screening resulted in a total of 40 MCI females, 42 MCI
males, 25 CN females, and 20 CN males. To balance the number
of subjects in each group, 20 of each group were randomly
selected for the study. Demographics of MCI subjects are
provided in Table 1. This includes age, Apolipoprotein E (ApoE)
genotype, the Mini Mental State Examination (MMSE), the
Geriatric Depression (GD) Scale, the Global Clinical Dementia
Rating (CDR), and the Functional Activities Questionnaire
(FAQ), and the Neuropsychiatric Inventory Questionnaire
(NPI-Q). IBM SPSS (IBM Corp. Armonk, NY, United States)
was used to run independent t-tests to ensure there was not a
statistically significant sex difference in age, MMSE, GD Scale,
CDR, FAQ and NPI-Q (P > 0.05). If normal distribution
could not be assumed based on the Shapiro–Wilk test, a non-
parametric Mann–Whitney test was performed. These values are
provided in Table 1.

Analysis of functional connectivity and
statistical testing

The subject’s original rs-fMRI and MRI images (NiFTI
format) were imported into the NITRC Functional Connectivity
Toolbox (CONN) version 20b (Whitfield-Gabrieli and Nieto-
Castanon, 2012). CONN utilizes SPM12 (Welcome Department
of Cognitive Neurology, United Kingdom) and MATLAB
R2020a (MathWorks, Natick, MA, United States) in its processes
and by default a combination of the Harvard-Oxford atlas (HOA
distributed with FSL2) (Smith et al., 2004; Woolrich et al., 2009;
Jenkinson et al., 2012) and the Automated Anatomical Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002).

The images were processed through the default functional
and structural preprocessing pipeline as detailed in Nieto-
Castanon (2020). This included realignment, slice timing
correction, coregistration/normalization, segmentation, outlier
detection, and smoothing. Additionally, this step extracted
the blood-oxygen-level dependent (BOLD) time series from
the regions of interest (ROIs) and at the voxels. Next, the
images were denoised to remove confounding effects from
the BOLD signal through linear regression and band-pass

2 http://www.fmrib.ox.ac.uk/fsl/

filtering. A quality assurance check was made after the
denoising to ensure normalization and that there were no visible
artifacts in the data.

A seed-to-voxel analysis was conducted for each subject.
This analysis created a seed-based connectivity (SBC) map
between the ROI (left or right hippocampus) to every voxel
of the brain. The SBC map is computed as the Fisher-
transformed bivariant correlation coefficients between the ROI
BOLD time series and each individual voxel BOLD time
series (Whitfield-Gabrieli and Nieto-Castanon, 2012). The
mathematical relationship to construct the SBC is shown below

r (x) =
∫
S (x, t)R (t) dt

(
∫
R2 (t) dt

∫
S2 (x, t) dt)1/2

Z (x) = tanh−1(r (x))

where R is the average ROI BOLD timeseries, S is the BOLD
timeseries at each voxel, r is the spatial map of Pearson
correlation coefficients, and Z is the SBC map of the Fisher-
transformed correlation coefficients for the ROI. Finally, F-tests
were conducted between the SBC maps to compare differences
between groups. For a cortical area to be considered significant,
the toolbox used the Gaussian Random Field theory parametric
statistics, with a cluster threshold p < 0.05 (FDR-corrected)
and voxel threshold p < 0.001 (uncorrected) to control the
type I error in multiple comparisons (Worsley et al., 1996).
Additionally, the area must have been over 800 voxels large or
cover more than 80 percent of a given atlas (specific brain area).

Results

The brain regions identified to be significantly different
between the MCI and CN groups are shown in Table 2. The left
and right para hippocampal gyrus, hippocampus, and amygdala
all had significant between-group differences in both sexes. The
regions that had a sex-specific were the Precuneus Cortex and
the Brainstem, observed only in males.

In MCI, males showed significantly stronger connectivity
of the right or left hippocampus to the left or right precuneus
cortex, respectively. This difference is shown visually by
comparing boxes A and D (see Figures 1–3). There was also
a sex specific difference detected in the brain stem. This is
visualized in Figure 3.

Discussion

This study supports that there are sex differences in
pathophysiological biomarkers of the brain in MCI. Specifically,
it extends our current understanding of the role of the
hippocampus in these differences. We demonstrate that

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2022.959394
http://www.fmrib.ox.ac.uk/fsl/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-959394 August 4, 2022 Time: 15:5 # 4

Williamson et al. 10.3389/fnagi.2022.959394

hippocampal functional connectivity differs to the precuneus
cortex and the brain stem between males and females.

The differences found between the MCI and cognitively
normal groups across sexes (posterior para hippocampal

gyrus, hippocampus, and amygdala) are consistent with
prior studies. The posterior para hippocampal gyrus is the
cortical ridge in the medial temporal lobe. It contains the
hippocampus (covering it medially) and amygdala (covering

TABLE 1 Mild cognitive impairment subject demographics.

ID Sex Age ApoE genotype MMSE GD Scale CDR FAQ NPI-Q

S001 F 74 ε3 ε3 26 6 0.5 0 3

S002 F 65 ε4 ε4 25 1 0.5 1 1

S003 F 71 ε4 ε4 29 0 0.5 0 0

S004 F 80 ε3 ε3 25 1 0.5 0 1

S005 F 70 ε3 ε3 30 5 0.5 0 -

S006 F 65 ε4 ε4 27 7 1.0 30 10

S007 F 79 ε3 ε3 29 0 0.5 4 2

S008 F 58 ε3 ε4 30 1 0.5 0 3

S009 F 76 ε3 ε4 26 7 0.5 4 8

S010 F 61 ε3 ε3 29 3 0.5 5 0

S011 F 72 ε3 ε4 28 2 1.0 19 16

S012 F 72 ε3 ε3 28 5 0.5 0 0

S013 F 84 ε3 ε3 28 6 0.5 8 0

S014 F 69 ε3 ε3 26 1 0.5 0 0

S015 F 72 ε3 ε3 30 2 0.5 0 3

S016 F 72 ε3 ε4 28 0 0.5 6 4

S017 F 81 ε3 ε4 25 2 0.5 7 3

S018 F 77 ε3 ε3 29 1 0.5 0 2

S019 F 67 ε3 ε3 29 2 0.5 0 0

S020 F 63 ε3 ε3 29 1 0.5 1 1

S021 M 68 ε3 ε4 29 0 0.5 2 3

S022 M 72 ε3 ε4 29 0 0.5 12 4

S023 M 62 ε4 ε4 29 0 0.5 0 0

S024 M 58 ε3 ε3 25 0 0.5 1 2

S025 M 74 ε3 ε4 28 2 0.5 3 2

S026 M 63 ε2 ε3 30 1 0.5 1 2

S027 M 90 ε3 ε3 26 2 0.5 4 11

S028 M 86 ε3 ε3 25 1 0.5 6 3

S029 M 87 ε3 ε4 29 1. 1.0 10 12

S030 M 70 ε2 ε4 28 2 0.5 2 8

S031 M 74 ε2 ε3 30 3 0.5 0 2

S032 M 75 ε3 ε4 27 5 1.0 21 7

S033 M 69 ε3 ε3 27 1 0.5 0 1

S034 M 74 ε3 ε3 29 2 1 0 0

S035 M 77 ε2 ε3 28 6 0.5 7 8.0

S036 M 80 ε3 ε4 21 3 1.0 22 4

S037 M 73 ε3 ε4 30 2 0.5 2 2

S038 M 76 ε3 ε3 30 1 0.5 1 1

S039 M 62 ε4 ε4 27 5 0.5 3 7

S040 M 76 ε3 ε3 23 5 0.5 3 4

Female µ ± SD 71± 7.1 - 27.7± 1.7 2.5± 2.4 0.55± 0.16 4.4± 7.7 3.0± 4.1

Male µ ± SD 73± 8.5 - 27.5± 2.5 2.1± 1.9 0.6± 0.21 5.0± 6.5 4.1± 3.5

Between sex t-tests P = 0.44 - P = 0.95 P = 0.58 P = 0.38 P = 0.22 P = 0.12

Bold values represented by Mean±STD and p-values.
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it anteromedially) (Goel, 2015). These structures are highly
integrated and significant in the process of associative memory
(Weniger et al., 2004). It has been shown that functional
connectivity between the hippocampus and amygdala to
different regions of the brain is disrupted in MCI (Wang et al.,
2011; Ortner et al., 2016). This is consistent with our findings.

The role of the precuneus cortex is consistent with other
literature highlighting its importance in the development of
AD. The precuneus cortex is in the posteromedial portion
of the parietal lobe. This area has a central role in a wide
range of integrated tasks, including visuo-spatial imagery,
episodic memory retrieval, and self-processing operations
(Cavanna and Trimble, 2006). The precuneus cortex has
been shown to have significantly greater activation in MCI,

compared to controls, during visual encoding memory tasks
(Rami et al., 2012). Prior studies have shown that functional
connectivity between the hippocampus and precuneus cortex
differs between individuals with early AD and healthy controls
(Kim et al., 2013; Yokoi et al., 2018). However, these studies
do not extend to differences between sexes. It has been
shown that in individuals with subjective memory complaints,
males compared to females had glucose hypometabolism in
the precuneus cortex (Cavedo et al., 2018). Our findings
extend this knowledge of differences between males and
females in the precuneus cortex and show that the effect
of MCI on the hippocampal-precuneus cortex functional
connectivity may be contributing to the high prevalence
of MCI in females.

TABLE 2 Brain regions with a significant difference between mild cognitive impairment and cognitively normal for each sex.

Sex ROI Brain area (Atlas) % Atlas covered # Of voxels

Female (FMCI v FCN) Right
Hippocampus

Left Posterior Para Hippocampal
Gyrus

89% 346

Right Posterior Para
Hippocampal Gyrus

89% 283

Right Hippocampus 100% 342

Left Hippocampus 94% 318

Right Amygdala 100% 342

Left Amygdala 97% 318

Left
Hippocampus

Left Posterior Para Hippocampal
Gyrus

91% 354

Right Posterior Para
Hippocampal Gyrus

90% 288

Right Hippocampus 98% 684

Left Hippocampus 100% 761

Right Amygdala 94% 322

Left Amygdala 100% 327

Male (MMCI v MCN) Right Brain Stem 24% 1001

Hippocampus Precuneus Cortex 18% 993

Left Posterior Para Hippocampal
Gyrus

97% 380

Right Posterior Para
Hippocampal Gyrus

97% 308

Right Hippocampus 98% 685

Left Hippocampus 100% 760

Right Amygdala 100% 342

Left Amygdala 100% 327

Left Brain Stem 20% 829

Hippocampus Precuneus Cortex 20% 1132

Left Posterior Para Hippocampal
Gyrus

92% 358

Right Posterior Para
Hippocampal Gyrus

94% 299

Right Hippocampus 98% 685

Left Hippocampus 100% 760

Right Amygdala 99% 337

Left Amygdala 100% 327
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FIGURE 1

Sex-Specific Pathological Features with Right Hippocampus as ROI. Highlighted display the statistically significant cortical regions between mild
cognitive impairment (MCI) and cognitively normal (CN) (p < 0.001) normalized to a 1–10 scale. Orange arrows indicate the areas of difference
at the precuneus cortex. Panels (A–C) display MMCI v MCN. Panels (D–F) display FMCI v FCN.

FIGURE 2

Sex-Specific Pathological Features with Left Hippocampus as ROI. Highlighted areas display the statistically significant cortical regions between
mild cognitive impairment (MCI) and cognitively normal (CN) (p < 0.001) normalized to a 1–10 scale. Orange arrows indicate the area of
difference at the precuneus cortex. Panels (A–C) display MMCI v MCN. Panels (D–F) display FMCI v FCN.
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FIGURE 3

Sex-Specific Pathological Features Sagittal View. Highlighted Areas display the statistically significant regions between cognitively normal (CN)
and mild cognitive impairment (MCI) (p < 0.001) normalized to a 1–10 scale. Orange circles indicate the area of difference in the brain stem and
provide size reference between subplots. (A) Right Hippocampus ROI MMCI v MCN. (B) Left Hippocampus ROI MMCI v MCN. (C) Right
Hippocampus ROI FMCI v FCN. (D) Left Hippocampus ROI FMCI v FCN.

Previous studies observed that functional connectivity of the
locus coeruleus (LC) and the ventral tegmental area (VTA) in
the midbrain of the brain stem differ in individuals with AD
and MCI. Specifically, the connectivity between the VTA and the
para hippocampal gyrus and cerebellar vermis were associated
with the occurrence of neuropsychiatric symptoms of AD (Serra
et al., 2018). Other studies showed that reduced connectivity
between the LC and para hippocampal gyrus in MCI was
correlated with memory performance (Jacobs et al., 2015).
The difference in functional connectivity seen between males
and females in this study extends these known connectivity
differences seen between MCI and controls to an additional
sex difference. This may be a factor in the observed worse
neuropsychological tasks seen in females.

The sex differences observed in MCI have also been
attributed to other factors besides functional connectivity.
For example, cognitive reserve, referring to education and
premorbid intelligence (IQ), is associated with the progression
of MCI to AD (Osone et al., 2014). Furthermore, Giacomucci
et al. (2022) reported that sex interacts with cognitive reserve
and influences the onset and severity of subjective cognitive
decline. Additionally, sex differences in the progression of AD
from MCI have been correlated with the ApoE ε4 allele, a well-
known risk factor for AD. It has been observed that ApoE ε4 is
only significantly correlated to the progression of AD in females
(Kim et al., 2015).

In summary, these findings are significant as they expand
our current understanding of the role of the hippocampus-
precuneus cortex and hippocampus-brainstem connectivity in
sex differences in MCI. Understanding these sex differences in
pathophysiology may aid in the development of sex-specific
precision medicine to manipulate hippocampal-precuneus
cortex and hippocampal-brainstem connectivity to decrease
the progression of MCI to AD. Our findings provide the
rationale for sex-specific interventions such as cognitive training

(Hardcastle et al., 2022) and neuro-navigation guided, targeted
non-invasive brain stimulation (Mackenbach et al., 2020; Yang
et al., 2021) or their combination (Vecchio et al., 2022).

Limitations and Future Work are related to this study’s
number of subjects. While this research provides preliminary
findings on sex differences in functional connectivity of the
hippocampus in individuals with MCI, the small sample size
(n = 80) is a limitation. Therefore, future work includes
increasing sample size in a larger database, as well as expanding
functional connectivity from other regions of interest for MCI,
in addition to the hippocampus. Furthermore, studies such as
these could be furthered by combining mentioned risk factors
such as cognitive reserve or genetic differences to explore if there
is any connection.
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